Opportunities for Biomass to Energy in Kentucky

Kate Shanks

Division of Renewable Energy

Dept. for Energy Development & Independence

January 10, 2011

Presentation Overview

- Context
 - Kentucky's Energy Strategy
 - The Case for Renewable Energy
 - Task Force Final Report
- Why Biomass?
 - Renewable Energy Resources
- Anaerobic Digestion 101
- Clean Energy Policy
 - Federal Drivers
 - Clean Energy Portfolio and Resource Requirements
 - State and Utility Drivers
- Projects
- Technical Assistance

Context

Strategy for Energy Independence

Intelligent Energy Choices for Kentucky's Future

- 1. Improve the Energy Efficiency of Kentucky's Homes, Buildings, Industries, and Transportation fleet
- 2. Increase Kentucky's Use of Renewable Energy
- 3. Sustainably Grow Kentucky's Production of Biofuels
- Develop a Coal-to-Liquids Industry in Kentucky to Replace Petroleum-Based Liquids
- Implement a Major and Comprehensive Effort to Increase Gas Supplies, Including Coal-to-Gas
- Initiate Aggressive Carbon Capture/Sequestration Projects for Coal-Generated Electricity in Kentucky
- 7. Examine the Use of Nuclear Power for Electricity Generation in Kentucky

energy.ky.gov/resources/Pages/EnergyPlan.aspx

The Case for Renewable Energy

- Reduce electricity cost
- Add predictability to future electricity expenses
- Reduce greenhouse gas emissions
- Meet renewable energy mandates/targets
- Become a model for others
- Local workforce development
- Emergency power benefits on critical infrastructure
- Diversify Kentucky's energy portfolio

Electricity Portfolios: Does Diversity Matter?

United States and Kentucky in 2008

- Kentucky is ranked 33 in renewable electricity generation.
- States generating less renewable electricity include Missouri, Vermont, Kansas, Ohio, Indiana, West Virginia.

Executive Task Force on Biomass and Biofuel Development

Task Force Recommendations

- Kentucky must identify a single agency to coordinate biomass development efforts.
- Kentucky must develop policies to mitigate demand risks.
- Kentucky must develop policies to mitigate supply risks.
- A biomass industry that is sustainable must be developed.
- Capitalization mechanisms must be developed.

energy.ky.gov/resources/Pages/btf.aspx

Why Biomass?

- Wind potential is limited by the resource in Kentucky.
- Solar potential is limited by its cost in Kentucky.
- Kentucky can expand its hydroelectric energy capacity.
- Kentucky can't produce electricity from its geothermal resource.
- Kentucky has significant potential to produce energy from biomass.

U.S. Onshore Wind Resource

KY Wind Resource

A Wind Resource Comparison

U.S. Solar Resource

KY Hydroelectric Resource

- 855 MW of potential at sites already dammed
- Three new Hydroelectric plants planned or under construction
 - Meldahl
 - Cannelton
 - Smithland

U.S. Geothermal Resource

U.S. Biomass Resource

Why Biomass in Kentucky?

Environmental Issues June 2006

It's Kentucky's Renewable Resource

- Production is distributed throughout every county, and is not dependent upon topography or type of soil
- It's Sustainable
 - Productivity, not diversion
 - Adds value
- It Creates jobs!!!!!!!!
 - Using untapped resources
 equals new jobs & new weelth

- Process whereby micro-organisms break down biodegradable material in the absence of oxygen
- Process produces biogas which can feed a cogeneration system and produce electricity and heat
- It's a form of distributed generation of electricity.
- By converting biogas into energy, greenhouse gas $(CO_2 \text{ and } CH_4)$ emissions are reduced.

Inputs

- Food Waste including distilling/brewing waste
- Industrial waste such as paper manufacturing residue
- Abattoir Waste
- Sewage Sludge
- Ag Waste (manure, slurry, straw, feathers, crop residue)

Outputs

- Biogas yields Electricity and Heat
- Digestate
- Renewable Electricity Credits/Carbon Credits

Clean Energy Policy

Policies Driving Clean Energy

- Federal Policies
 - Tax Incentive Policy
 - EPA Regulations
 - Clean Energy Mandate
- State and Utility Policies
 - Clean Energy Mandates
 - Tax Incentive Policy
 - Rebates and Standard Offers

Federal Drivers

Tax Incentive Policy

- Utility Scale Incentives
 - Investment Tax Credit and Grant
 - Production Tax Credit

Federal Drivers

EPA Regulations and Permitting Actions

- Clean Air Transport Rule
 - Reduction in annual SO₂ and NO_x emissions
 - Intended to improve air quality of downwind states
- Tailoring Rule
- Coal Combustion Waste Requirements
- Permitting requirements related to the mining of coal

Federal Drivers

National Clean Energy Portfolio Standards

- Requires utilities to meet a portion of electricity demand with clean energy resources including renewables and energy efficiency measures.
- Past Legislation
 - American Clean Energy and Security Act
 - Renewable Electricity Promotion Act of 2010

A KY Clean Energy Portfolio

Resource Requirements

				Additional	Relative to 2008 Assumed
Resource	(mWh)	(mW)	Tons	Requirements	Physical Resources
Dairy Cattle					
Manure	117075	20	1028700	67,500 Cattle	75% of All Kentucky Dairy Cattle
Poultry -					
Broiler Litter	125033	14	452	24,888,328 Birds	50% of All Kentucky Broilers
Poultry –					
Layer Litter	38866	5	42	2,292,267 Birds	50% of All Kentucky Layers
Poultry –					
Pullet Litter	4512	0.5	16	898,266 Birds	50% of All Kentucky Pullets
Hog Manure	15445	2	141049	141,049 Birds	50% of All Kentucky Hogs

Manure resource needed to produce 42 MW of power KY has 16,000 MW of generation capacity.

Animal Waste to Energy

Total Operating Projects: 151

Total Estimated Energy Production: 392,000 MWh/yr equivalent

State and Utility Drivers

Renewable Portfolio Standards

State and Utility Drivers

Financial Incentives

- Utility Scale Tax Incentives
 - Renewable Energy Facility
 - Sales Tax Exemption
- Utility incentives for energy efficiency
- Tennessee Valley Authority
 - Generation Partners
 - Standard Offer

TVA Service Region

West Lafayette, IN WWTP

- Serves about 70,000 people
- Digester tanks are original
- Project Specs
 - Combined Heat and Power System
 - Water loop captures waste heat to heat the tanks
 - 2- 65 KW generating units produce electricity
- Biogas generated by the original tanks at one point heated the tanks; the system failed and biogas was flared.

West Lafayette, IN WWTP Financials

- Total project cost: \$8.5 million
- Total CHP cost: \$1.2 million
- CHP investment saves the rate payers electricity, natural gas and grease tipping fee costs
- Utility pays $6.5-7 \, \epsilon/\text{kwh}$. Demand charges increase the cost to $13 \, \epsilon/\text{kwh}$
- Utility expects a payback period of 7.5-10 years
- Contact: Dave Henderson <u>dhenderson@westlafayette.in.gov</u>

Bel Cheese, Leitchfield, KY

- Examining anaerobic digestion to process whey
- Digesters will minimize effluent and produce enough gas to fuel boilers
- Excess gas will be produced
- Anaerobic Digestion as a solution to waste management

Technical Assistance

Southeast Combined Heat and Power Application Center

www.chpcenterse.org/home.html

- Viability screening tools
- Initial Feasibility Assessment
- Site Assessment Visits
- Assistance in Project Justification

Questions?

Kate Shanks
Department for Energy Development
and Independence

Kate.Shanks@ky.gov

502-564-7192

